
Novel High speed Vedic Multiplier proposal incorporating Adder based on Quaternary
Signed Digit number system

Preyesh Dalmia, Vikas, Abhinav Parashar, Akshi Tomar and Dr. Neeta Pandey
Dept. of Electronics and Communication Engineering

Delhi Technological University (formerly Delhi College of Engineering)
New Delhi, India

{preyeshdalmia, vikas.dce2016, abhinavparashar.1810, akshitomar274}@gmail.com, neetapandey@dce.ac.in

Abstract— This paper presents a high-speed Vedic multiplier
based on the Urdhva Tiryagbhyam sutra of Vedic mathematics
that incorporates a novel adder based on Quaternary Signed
digit number system. Three operations are inherent in
multiplication: partial products generation, partial products
reduction and addition. A fast adder architecture therefore
greatly enhances the speed of the overall process. A Quaternary
logic adder architecture is proposed that works on a hybrid of
binary and quaternary number systems. A given binary string is
first divided into quaternary digits of 2 bits each followed by
parallel addition reducing the carry propagation delay. The
design doesn’t require a radix conversion module as the sum is
directly generated in binary using the novel concept of an
adjusting bit. The proposed multiplier design is compared with a
Vedic multiplier based on multi voltage or multi value logic
[MVL], Vedic Multiplier that incorporates a QSD adder with a
conversion module for quaternary to binary conversion, Vedic
multiplier that uses Carry Select Adder and a commonly used
fast multiplication mechanism such as Booth multiplier. All these
designs have been developed using Verilog HDL and synthesized
by Synopsys Design Compiler. They have been realized using the
open source NAN gate 15nm technology library. The proposal
shows a maximum of 88.75% speed improvement with respect to
Multi Value logic based 128x128 Vedic multiplier while the
minimum is 17.47%.

Keywords-Multiplier; Quaternary Signed Digit adder [QSD];
Urdhva Tiryagbhyam; Vedic Mathematics

I. INTRODUCTION
One of the primary features that help us determine the

computational power of a processor is the speed of its
arithmetic unit. An important function of an arithmetic block is
multiplication because, in most mathematical computations, it
forms the bulk of the execution time. Thus, the development of
a fast multiplier has been a key research area for a long time.

 Some of the important algorithms proposed for fast
multiplication in literature are Array, Booth and Wallace
multipliers [1]-[5]. Vedic Mathematics [6, 7] is a methodology
of arithmetic rules that allows for more efficient
implementations regarding speed. Multiplication in this
methodology consists of three steps: generation of partial
products, reduction of partial products, and finally carry-
propagate addition. Multiplier design based on Vedic
mathematics has many advantages as the partial products and
sums are generated in one step, which reduces the carry
propagation from LSB to MSB. This feature helps in scaling
the design for larger inputs without proportionally increasing

the propagation delay as all smaller blocks of the design work
concurrently. References [8], [9] and [11] compared Vedic
Multiplier with other multiplier architectures namely Booth,
Array and Wallace on the basis of delay and power
consumption. Vedic multiplier showed improvements in both
the parameters over other architectures. Thus, many
implementations of multiplication algorithms based on Vedic
sutras have been reported in literature [10]-[12]. Vedic
multiplier schemes proposed in literature are based on Urdhva
Tiryagbhyam and Nikhilam sutras of Vedic Mathematics. As
Nikhilam sutra is only efficient for inputs that are close to the
power of 10, in this paper a design to perform high-speed
multiplication based on the Urdhva Tiryagbhyam sutra of
Vedic Mathematics which is generalized method for all
numbers, has been presented.

The final step, carry-propagate addition, requires a fast
adder scheme because it forms a part of the critical path. A
variety of adder schemes have been proposed in literature to
optimize the performance of Vedic multiplier [13]. Adder
based on QSD shows an improvement in speed over other state
of the art adders [14, 15]. Earlier implementations of QSD
adder were based on Multi Voltage or Multi Value Logic
(MVL) [16]. The difficulty in application of quaternary
addition outside MVL (Multi Voltage logic) is that, the adder is
only a small unit of the design whose outputs will needed to be
converted back to binary for further processing. However, use
of a conversion module undermines the advantages gained in
speed by using QSD. In this paper, a novel implementation of
an adder based on QSD is proposed, which reduces the carry
propagation delay in the design by making use of carry free
arithmetic. The proposed adder design works on a hybrid of
binary and quaternary number systems wherein the sum is
directly generated in binary using the concept of an adjusting
bit, eliminating the conversion module. The design can be
scaled to larger bit implementations such as 32, 64, 128 or
more with minimal increase in propagation delay owing to the
parallelism prevalent in the design. We have compared our
design with a Vedic multiplier based on MVL logic that uses a
ripple carry adder [16], Vedic Multiplier that incorporates a
QSD adder and a conversion module for quaternary to binary
conversion, Vedic multiplier that uses state of the art fast adder
scheme such as Carry select adder [17] and a commonly used
fast multiplication mechanism such as Booth multiplier [18], to
prove the feasibility of our design across important comparison
points.

This paper is organized as follows. Section II describes the
Basic Terminology associated with our design. Section III
describes the Proposed Multiplier architecture based on Vedic

2018 31th International Conference on VLSI Design and 2018 17th International Conference on Embedded Systems

2380-6923/17 $31.00 © 2017 IEEE

DOI 10.1109/VLSID.2018.78

289

multiplication and Quaternary addition. Section IV comprises
of Result in which device utilization summary and
computational path delay obtained for the proposed Vedic
multiplier (after synthesis) is discussed and Section V consists
of Conclusion.

II. BASIC TERMINOLOGY

A. Urdhva Tiryagbhyam (UT) Sutra
The UT sutra is an ancient Vedic Mathematics sutra that

can be used for multiplication of two numbers in any number
system. It is based on “Vertical and Crosswise” multiplication.
A 2x2 multiplier based on UT sutra is depicted in Fig. 1 and
Fig. 2, where X and Y represent inputs while Z corresponds to
output. Stepwise procedure is outlined below.

Step1: Vertical Multiplication: The least significant digits
of the multiplicand and the multiplier are multiplied, as in (1).

Z0=X0.Y0 (1)
Step2: Crosswise Multiplication and Addition: Z1, in (2), is

obtained by cross multiplying X1 and Y0, and Y1 and X0 and
subsequently adding the two products. In this stage a carry C1,
as in (3), might be generated, that is propagated to the next
step.

Z1= (X0.Y1) ⊕ (X1.Y0) (2)
C1=X0.X1.Y0.Y1 (3)

Step3: Vertical Multiplication and Addition: The most
significant digits of the multiplicand and the multiplier are
multiplied, and the product is added with the carry of the
previous step to obtain Z3 and Z2, as in (4) and (5)
respectively.

Z2= (X1.Y1) ⊕ C1 (4)
Z3= X0.X1.Y0.Y1 (5)

The final result is concatenation of Z3, Z2, Z1 and Z0.

Fig. 1. Vertical and Crosswise multiplication

The logic circuit for 2x2 UT multiplier is shown Fig. 2.

Fig. 2. 2x2 UT multiplier

B. Quaternary Signed Digit (QSD number system)
The QSD is a radix-4 number system that provides the

benefit of faster arithmetic calculations over binary
computation, as it eliminates rippling of carry during addition.
Every number in QSD can be represented using digits from the

set {-3,-2,-1, 0, 1, 2, 3}. Being a higher radix number system it
utilizes less number of gates and hence saves on time and
reduces circuit complexity. The stages involved in addition of
two numbers in QSD are:

Stage1: Generation of intermediate carry and sum: When
two digits are added in QSD number system, the resulting sum
ranges between -6 to +6. Numbers with magnitude higher
than 3 are represented by multiple digits with least significant
digit representing sum and the next digit corresponds to carry.
Also, every number in QSD can have multiple representations
[14, 15]. The representation is chosen such that the magnitude
of sum digit is 2 or less than 2 and the magnitude of carry digit
is 1 or less than 1, the reason for which is explained in the next
stage.

Stage2: The intermediate sum and carry have a limit fixed
on their magnitude because this allows carry free addition in
the second step. The result can be obtained directly by adding
the sum digit with the carry of the lower significant digit [14,
15].

III. PROPOSED DESIGN

A. 4x4 Multiplier
Block diagram of a 4x4 multiplier is shown in Fig. 3. In this

multiplier, four 2x2 multipliers are arranged systematically.
Each multiplier accepts four input bits; two bits from
multiplicand and other two bits from multiplier. Addition of
partial products is done using two four bit Quaternary adders, a
two-bit adder and a half adder. The final result is obtained by
concatenating the least significant two bits of the first
multiplier, four sum bits of the second four-bit Quaternary
adder and the sum bits of two-bit adder.

Fig. 3. Proposed 4x4 Multiplier

Table I shows all intermediate and final results involved in
the multiplication process of two binary numbers, A = (1111)2
and B = (1001)2.

The data flow in the proposed 4x4 multiplier is given
below:

1) A[1:0] and B[1:0], A[3:2] and B[1:0], A[1:0] and
B[3:2], and A[3:2] and B[3:2] are multiplied by 2x2 Vedic
multipliers, giving output D0[3:0], D1[3:0], D2[3:0] and
D3[3:0] respectively.

290

2) D1 [3:0] and D2[3:0] are added by the proposed 4 bit
QSD adder, giving D4[3:0] and a carry out as the outputs.

3) D4[3:0] and {D3[1:0], D0[3:2]} are added by the
second 4 bit QSD adder, giving D5[3:0] and a carry out as the
outputs.

4) The half adder is used to add the carry outs of the
QSD adders. The output obtained is fed to the 2 Bit Adder
along with D3[3:2].

5) The result, C, in binary is obtained by concatenation
of output of 2 Bit Adder, D5[3:0] and D0[1:0].

The proposed design can be extended to multiply both
negative and positive integers by an addition of a sign bit in
both inputs. An XOR logic can then be used to compute the
sign bit of the final output. The multiplication of the
magnitudes will proceed simultaneously in a similar manner to
the example described above.

TABLE I. MULTIPLICATION RESULT OF TWO 4 BIT BINARY NUMBERS
USING THE PROPOSED DESIGN

 Binary
equivalent

Decimal
equivalent Explanation

A (1111)2 15 Input 1
B (1001)2 9 Input 2

D0 (0011)2 3 Output of 2x2 Vedic
Multiplier 1

D1 (0011)2 3 Output of 2x2 Vedic
Multiplier 2

D2 (0110)2 6 Output of 2x2 Vedic
Multiplier 3

D3 (0110)2 6 Output of 2x2 Vedic
Multiplier 4

D4 (01001)2 9 Output of 4 bit QSD adder 1
(D1+D2)

D5 (10001)2 17 Output of 4 bit QSD adder 2
(D4 +{D3[1:0],D0[3:2]})

C[1:0] (11)2 3 D0[1:0]
C[5:2] (0001)2 1 D5[3:0]

C[7:6] (10)2 2 Output of 2 Bit Adder
(D3[3:2]+D4[4]+D5[4])

C[7:0] (10000111)2 135 Final Result

B. 32x32 multiplier
The 4x4 multiplier design can be scaled to multiply larger

numbers as shown in Fig. 4, where the design is scaled up for a
32 bit multiplier.

Fig. 4. Proposed 32x32 Multiplier

C. Proposed adder design based on QSD
In this paper, a novel idea of an adder, based on QSD

(Quaternary Signed Digit) is proposed. The algorithm for the
proposed adder uses a hybrid of quaternary and binary number
systems. The outputs from smaller multipliers are obtained as
binary strings. Inside the addition module, this string is broken
into quaternary digits of two bits each. Addition using QSD
allows us to reduce the carry propagation delay by making use
of carry free arithmetic i.e. the carry doesn’t ripple past the
subsequent quaternary digit. Especially for higher bit input
strings this method is extremely efficient.

The difficulty in application of quaternary addition outside
MVL (Multi Voltage logic) is that the least significant 2 bits of
the binary representation of the quaternary digits can’t be
directly concatenated to form an output binary string for every
case as depicted in Table II. Each string would have to be read
individually and a conversion module that converts quaternary
to binary would have to be employed. To overcome this
limitation, the concept of an adjusting bit has been introduced.

TABLE II. CONVERSION OF A QUATERNARY NUMBER TO BINARY
NUMBER SYSTEM

Quaternary
number A 2 1 010_001 Quaternary

number B 2 010_111

Binary
equivalent of A 1001

Incorrect Binary
equivalent of

B
1011

Decimal
equivalent

of A
9

Incorrect
Decimal

equivalent of B
11

The Intermediate sum lies in the range [0, 6], as the
operands are unsigned numbers. From [16], for quaternary
addition to be carry free beyond the first stage, the
intermediate sum can’t be greater than 2. To ensure this
stipulation holds true, the (1)4 representation of 3 needs to be
chosen while adding. However, this represents a blocking case
when converting the final output string back into binary as it
prohibits us from simply concatenating the lower two bits of
quaternary output strings to get the binary equivalent.

For addition of unsigned numbers, if the (03)4
representation would have been used, direct concatenation of
results could have been possible. But, then that wouldn’t have
always been carry free after the initial stage. Thus, the concept
of an adjusting bit has been devised to solve the dilemma of
which representation of 3 to use, such that both carry free
addition and concatenation of output string bits to get the final
output can be realized in the same design.

The solution to the problem described above, is that the
(03)4 representation of 3 is required to be taken instead of the
(1)4 representation in some cases. But, determining when such
a change is required before proceeding with the addition will
increase the delay of the design and be counter-productive.
Thus, the (1)4 representation of 3 is always selected in stage 1,
to satisfy necessary conditions for carry free arithmetic. While
necessary adjustments are made in stage 2 if (03)4
representation was to be taken, the need for such an adjustment
is determined via an adjusting bit.

OBSERVATION 1: In both quaternary representations of 3,
(03)4 or (1)4, the two least significant bits of the least

291

significant digit are 11. Thus, regardless of which
representation was supposed to be taken, the lower two bits of
the intermediate sum will remain same and these are the two-
bit positions that would be concatenated in the end.

The problem of incorrect representation would come under
certain cases. To better understand these cases an example is
described. The example uses two numbers as inputs
represented using three quaternary digits each:

Input A= (X3X2X1)4 = (A8A7A6A5A4A3A2A1A0)2 = (030)4

Input B = (Y3Y2Y1)4 = (B8B7B6B5B4B3B2B1B0)2 = (001)4
The Base case: For addition of X2 and Y2, if the

intermediate sum comes out to be 3, as stated above (1)4

representation will be chosen in stage 1. The Intermediate sum
for this digit addition becomes or (111)2. If then the
intermediate carry from the addition of X1 and Y1 is 0, the
final output after stage 2 for this addition would be . The
intermediate carry that will be added to addition of X3 and Y3
would be 1. The binary output thus received after the
concatenation of lower two bits will be wrong, as shown in
Table III.

As established above, this problem wouldn’t have been
there if the (03)4 representation of 3 would have been used.
According to the findings of observation 1, the intermediate
carry from addition of X2 and Y2 needs to be negated for the
correct result because for (03)4 there would have been no
carry. This negation will be done by the adjusting bit.

TABLE III. EXAMPLE OF QUATERNARY ADDITION USING ORIGINAL LOGIC

X3X2X1 0 3 0 000_011_000 Input A

Y3Y2Y1 0 0 1 000_000_001 Input B

U1 000_111_111 Stage 1 output (Intermediate sum)

U2 0 1 0 Stage 1 output (Intermediate carry)

R 001_111_001 Result (Before concatenation)

R’ (01 11 01)2 Incorrect Result (After concatenation)

Mathematically this can be written as:
Final output = Intermediate sum + Intermediate carry –

Adjusting bit.
Thus, adjusting bit can be said to be 1 when (Sn-1.) is true

where Sn-1 and are defined as:
Sn-1: True if n-1th intermediate sum digit is 3.

: True if there is no carry from n-2th digits sum.
Secondly, another special case could arise when the

intermediate sum for addition of X2 and Y2 and X1 and Y1 are
both 3. For example if A = (030)4 and B = (003)4. Now as per
previously devised logic the addition would have proceeded as
in Table IV.

Thus, the final result as shown in Table IV, would have
been (01 11 11)2 which is incorrect. The intermediate carry
from the addition of X2 and Y2 hasn’t been negated while
carry from addition of X1 and Y1 has. This is because

intermediate carry from X1 and Y1 is taken as 1 while
calculating the adjusting bit for X3 and Y3 While an
adjustment is made to it later to negate it to 0. This adjustment
hasn’t been factored into the formula. Thus, the modified and
complete formula for adjusting bit becomes as in (10).

TABLE IV. EXAMPLE OF QUATERNARY ADDITION USING INITIAL
MODIFIED LOGIC

X3X2X1 0 3 0 000_011_000 Input A

Y3Y2Y1 0 0 3 000_000_011 Input B

U1 000_111_111 Stage 1 output (Intermediate sum)

U2 0 1 1 Stage 1 output (Intermediate carry)

A 0 1 0 Adjusting Bit

R 001_111_111 Result (Before concatenation)

R’ (01 11 11)2 Incorrect Result (After concatenation)

Adjusting bit = Sn-1.(Sn-2+) (10)

Where Sn-2 is true if n-2th intermediate sum digit is 3. This
formula can cover the problem of n consecutive 3’s in a
similar manner.
The adjusting bit can be predicted based on the initial inputs to
the adders itself. It can be computed in parallel with Stage 1.
Thus, effect on delay of the adder is minimal. The above
example is revaluated with the modified formula:

Input A= (X3X2X1)4 = (A8A7A6A5A4A3A2A1A0)2 = (030)4

Input B = (Y3Y2Y1)4 = (B8B7B6B5B4B3B2B1B0)2 = (003)4

Adjusting Bit for addition of Xn and Yn is Sn-1.(Sn-2+). As
can be seen from the flow of data shown in Table V. The
modified formula gives the correct binary output after
concatenation.

The proposed adder works in two stages, as shown in Fig. 5.
1) In the first stage, as in Fig. 5(a), every individual

digit at the same position in the quaternary representation of
two n-bit numbers A and B is added using a 2 Bit Adder to
generate a sum. This sum lies in the range [0, 6]. From the
sum obtained from the adder, the intermediate sum and
intermediate carry for the next stage are calculated in parallel
using 2x1 multiplexers. The logic for the selection of the
representation of sum and carry has been explained in [16].
The adjusting bit is also computed in parallel with the addition
process. The input to the adjusting bit calculation block for
every quaternary digit addition are the previous two
quaternary digits of A and B signified by [n-2: n-5].

2) Second stage has two modules as shown in Fig. 5(b).
One is a one-bit module that performs the computation (A+B-
C). In this case A would be LSB of intermediate sum, B would
be carry from the previous quaternary digit addition and C
would be the adjusting bit. The other module will be a half
adder which will add the carry from the (A+B-C) module and
the bit to the left of the least significant bit of the intermediate
sum. As for the final concatenation, the sign bit would not be

292

used owing to the adjustments proposed in the design. Thus,
its final value is not computed.

TABLE V. EXAMPLE OF QUATERNARY ADDITION USING PROPOSED
LOGIC

A (1100)2 Input 1

B (0011)2 Input 2

Q1 11_00 3 0 Quaternary representation of Binary number A

Q2 00_11 0 3 Quaternary representation of Binary number B

X2X1 3 0 011_000 Input A

Y2Y1 0 3 000_011 Input B

U1 111_111 Stage 1 output (Intermediate sum)

U2 1 1 Stage 1 output (Intermediate carry)

S2 1 2nd intermediate sum digit is 3

S1 1 1st intermediate sum digit is 3

S0 0 0th digits do not exist

C1 1 Carry from sum of 2nd digits is 1

C0 1 Carry from sum of 1st digits is 1

A2 S2.(S1+) = 1 2nd Adjusting Bit

A1 S1.(S0 +) = 0 1st Adjusting Bit

A 1 0 Stage 1 output (Adjusting Bit)

U3 001_111_111 Stage 2 output (Before Adjusting Bit logic)

U4 000_111_111 Stage 2 output (After Adjusting Bit logic)

R (1111)2 Result after concatenation

2 Bit Adder-1

 B[n:n-1] A[n:n-1]

MUX-1

 To Stage 2 U2 (Quat_carry) U1[2:0] (Quat_sum)

MUX-2

Select
line

Carry

{1'b0,Sum[1:0]}

1'b1 3'b111

Adjusting Bit
Logic

{B[n-2:n-5],A[n-2:n-5]}

Combinational
Logic

 (a) Stage 1

(b) Stage 2
Fig. 5. Proposed Adder

IV. RESULTS
In this section, we present a comparison between proposed

design of multiplier and existing architectures namely Vedic
multiplier based on MVL logic that uses a ripple carry adder
[16], Vedic Multiplier that incorporates a QSD adder with a
conversion module for quaternary to binary conversion, Vedic
multiplier based on a different fast adder scheme such as Carry
select adder [17] and a known fast multiplication scheme such
as Booth multiplier [18]. These four architectures were chosen
and implemented to verify the viability of proposed design
across all domains it’s pertinent to. All architectures are
described using Verilog HDL and all the possible states
including corner cases for digit by digit multiplication blocks
are verified using simulation with Xilinx ISim simulator. The
design synthesis has been carried out using Synopsys Design
Compiler, using the open-source NAN gate 15nm technology
library[19]. Table VI shows that proposed design has made
substantial improvements in terms of speed over the existing
designs. The total delay of 128x128 Multiplier based on
Proposed Design comes out to be 578.85 ps which is 88.75%
faster than booth multiplier,71.35% faster than MVL multiplier
based Multiplier, 17.47% faster than Carry select adder based
Multiplier and 51.69% faster when compared with QSD Adder
based Vedic Multiplier using conversion module.

 Proposed 128x128 design has 7.7% lower implementation
area then CSA based Vedic multiplier but shows an increase in
area over other three designs, as shown in Table VII, it can be
considered as a tradeoff for the substantial improvement in
speed over those designs. As shown in Table VIII, for 16 input
bit value the proposed design consumes the lowest power
amongst the designs compared. Whereas, for the larger input
sizes, the power consumed by proposed designs is 25.14% and
20.64% more than the lowest recorded power amongst the
designs compared for 64 bit and 128 bit respectively.

TABLE VI. COMPARISON OF PROPOSED DESIGN WITH OTHER
MULTIPLIER ARCHITECTURES ON THE BASIS OF TOTAL DELAY

Type Of Multiplier Delay (ps)
16 bit 32 bit 64 bit 128 bit

Proposed Design 266.13 422.65 501.68 578.85
QSD Adder based

Vedic Multiplier with
conversion module

308.27 506.96 878.25 1198.21

CSA based Binary
Vedic Multiplier 362.61 484.88 595.11 701.43

MVL Multiplier 431.18 949.25 1763.98 2020.71
Booth Multiplier 637.57 1259 2604 5148.56

TABLE VII. COMPARISON OF PROPOSED DESIGN WITH OTHER
MULTIPLIER ARCHITECTURES ON THE BASIS OF AREA

Type Of Multiplier Area (No. of Cells)
16 bit 32 bit 64 bit 128 bit

Proposed Design 768 3475 14440.6 58842.6
QSD Adder based

Vedic Multiplier with
conversion module

678.9 2660.8 12303 50181.9

CSA based Binary
Vedic Multiplier 938 3884.2 15801 63767

MVL Multiplier 432 1765.1 7212 29464.2
Booth Multiplier 605 2332 8977 35987

293

TABLE VIII. COMPARISON OF PROPOSED DESIGN WITH OTHER
MULTIPLIER ARCHITECTURES ON THE BASIS OF POWER

Type Of Multiplier Power (mW)
16 bit 32 bit 64 bit 128 bit

Proposed Design 737.72 4446.7 24132 99630
QSDA based Vedic

Multiplier with
conversion module

774.35

4066.3

20958

87176

CSA based Binary
Vedic Multiplier

1024.4 4558.7 19284 82580

MVL Multiplier 912.5 4722.2 21189 96478
Booth Multiplier 800.62 4627.1 19659 86556

V. CONCLUSION
It can be concluded that the design when scaled to higher

bits only shows a marginal rise in delay due to its core
strengths. Firstly, the parallelism involved in its partial product
generation. Secondly, reduction of carry propagation delay in
the novel adder it incorporates. Due to the use of QSD, the
design is able to incorporate carry free arithmetic while
eliminating radix conversion module speed overhead by
integrating concept of adjusting bit logic in its architecture.

The proposed design showed an increase in implementation
area over some designs due to increased parallelism even in
finer nuances of the architecture. The proposed design is
targeted towards digital systems requiring high throughput and
low latency at the cost of area overhead. For example, in a DSP
system, operations such as Fast Fourier Transform,
Convolution, Filtering and Discrete Wavelet transform etc.
Multipliers play a key role in determining the speed of the
system. Similarly, this architecture would be a good candidate
to be implemented as a large part of systems like DCT, Central
Processing Unit (CPU), MAC (Multiply and Accumulate) Unit,
Image Processors where high-speed multiplications are critical
to the performance of the system.

It can also be observed that despite the objective of
decreasing the delay, the proposed design performs better than
most designs compared in terms of power for lower input bit
sizes [16 and 32 bit]. Although it consumes more power than
other designs higher input bit sizes [64 and 128 bit], it is
justifiable when factored in with advantages gained in speed
for higher input bits.

REFERENCES
[1] M. Rabaey, A. Chandrakasan, and B. Nikolic, “Digital Integrated

Circuits A Design Perspective,” PHI, 2003.
[2] B. Pahrami, “Computer Arithmetic and Hardware Design,” New York,

Oxford University Press, 2000.
[3] M. Ercegovac, and T. Lang, “Digital Arithmetic, San Francisco,

Morgan Kaufmann,” 2004.
[4] C S Wallace, “A Suggestion for a Fast multiplier”, IEEE Transactions

on Electronic Computers, Vol. EC-13, Issue 1, pp. 14-17, 1964.

[5] K. Choi and M. Song, “Design of a high performance 32x32-bit
multiplier with a novel sign select booth Encoder,” in IEEE International
Symposium on Circuits and Systems, Volume 2, 2001, pp. 701-704.

[6] J. Swami S. B. K.Tirthaji Maharaja, “Vedic Mathematics: Sixteen
Simple Mathematical Formulae from the Veda,” Delhi, 1965.

[7] S. N. A and K. N, “Implementation of Power Efficient Vedic
Multiplier,” International Journal of Computer Applications (0975 –
8887), Vol. 43– No.16, 2012, pp. 21-24.

[8] S. Vaidya and D. Dandekar, “Delay-Power Performance Comparison of
Multipliers In VLSI Circuit Design,” International Journal of Computer
Networks & Communications (IJCNC), Vol.2, No.4, July 2-010.

[9] H. Thapliyal and M. B. Srinivas, “High Speed Efficient N X N Bit
Parallel Hierarchical Overlay Multiplier Architecture Based On Ancient
Indian Vedic Mathematics”, Enformatika (Transactions on Engineering,
Computing and Technology),Vol. 2, Dec 2004, pp. 225-228.

[10] H. D. Tiwari, G. Gankhuyag, C. M. Kim and Y. B. Cho, “Multiplier
design based on ancient Indian Vedic Mathematics,” International SoC
Design Conference, 2008, pp. 65-68.

[11] D. Jaina, K. Sethi and R. Panda, “Vedic Mathematics based multiply
accumulate Unit,” IEEE International Conference on Computational
Intelligence and Communication Systems.2011, pp. 754-757.

[12] S. Jinesh, P. Ramesh and J. Thomas, “Implementation of 64 bit high
speed multiplier for DSP application- based on Vedic mathematics,” in
IEEE TENCON,2015, pp. 1-5.

[13] J. Thomas, R Pushpangadan, S Jinesh, “Comparative study of
performance of vedic multiplier on the basis of adders used,” IEEE-
WIECON, 2015, pp. 325-328.

[14] R. Rani, L. K. Singh and N. Sharma, “FPGA Implementation of Fast
Adders using Quaternary Signed Digit Number System,” 2009
International Conference on Emerging Trends in Electronic and
Photonic Devices & Systems (ELECTRO-2009), pp. 132 - 135.

[15] Nagamani A. N, Nishchai S, "Quaternary High Performance Arithmetic
Logic Unit Design", 14th Euromicro Conference on Digital System
Design 2011 IEEE.

[16] A. S. Shende, M. A. Gaikwad and D. R. Dandekar, “Design of efficient
4X4 Quaternary Vedic Multiplier Using Current Mode Multi Valued
Logic,” Int. J. on recent Trends in Engineering and Technology,Vol 10,
No 2, Jan. 2014, pp. 59-69.

[17] G. R. Gokhale, S. R. Gokhale, “Design of area and delay efficient Vedic
multiplier using Carry Select Adder,” International Conference on
Information Processing (ICIP), 2015, pp. 295 – 300.

[18] S. Kim and K. Cho, “Design of High-speed Modified Booth Multipliers
Operating at GHz Ranges,” World Academy of Science, Engineering
and Technology 61, 2010, pp. 1-4.

[19] M. Martins, J. M. Matos, R. P. Ribas, A. Reis, G. Schlinker, L. Rech and
J. Michelsen, “Open Cell Library in 15nm FreePDK Technology”, In
Proceedings of the International Symposium on Physical Design (ISPD),
2015.

294

