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Abstract— This paper presents a high-speed Vedic multiplier 
based on the Urdhva Tiryagbhyam sutra of Vedic mathematics 
that incorporates a novel adder based on Quaternary Signed 
digit number system. Three operations are inherent in 
multiplication: partial products generation, partial products 
reduction and addition. A fast adder architecture therefore 
greatly enhances the speed of the overall process. A Quaternary 
logic adder architecture is proposed that works on a hybrid of 
binary and quaternary number systems. A given binary string is 
first divided into quaternary digits of 2 bits each followed by 
parallel addition reducing the carry propagation delay. The 
design doesn’t require a radix conversion module as the sum is 
directly generated in binary using the novel concept of an 
adjusting bit. The proposed multiplier design is compared with a 
Vedic multiplier based on multi voltage or multi value logic 
[MVL], Vedic Multiplier that incorporates a QSD adder with a 
conversion module for quaternary to binary conversion, Vedic 
multiplier that uses Carry Select Adder and a commonly used 
fast multiplication mechanism such as Booth multiplier. All these 
designs have been developed using Verilog HDL and synthesized 
by Synopsys Design Compiler. They have been realized using the 
open source  NAN gate 15nm technology library. The proposal 
shows a maximum of 88.75% speed improvement with respect to 
Multi Value logic based 128x128 Vedic multiplier while the 
minimum is 17.47%. 

Keywords-Multiplier; Quaternary Signed Digit adder [QSD]; 
Urdhva Tiryagbhyam; Vedic Mathematics 

I.  INTRODUCTION 
One of the primary features that help us determine the 

computational power of a processor is the speed of its 
arithmetic unit. An important function of an arithmetic block is 
multiplication because, in most mathematical computations, it 
forms the bulk of the execution time. Thus, the development of 
a fast multiplier has been a key research area for a long time. 

 Some of the important algorithms proposed for fast 
multiplication in literature are Array, Booth and Wallace 
multipliers [1]-[5].  Vedic Mathematics [6, 7] is a methodology 
of arithmetic rules that allows for more efficient 
implementations regarding speed. Multiplication in this 
methodology consists of three steps: generation of partial 
products, reduction of partial products, and finally carry-
propagate addition. Multiplier design based on Vedic 
mathematics has many advantages as the partial products and 
sums are generated in one step, which reduces the carry 
propagation from LSB to MSB. This feature helps in scaling 
the design for larger inputs without proportionally increasing 

the propagation delay as all smaller blocks of the design work 
concurrently. References [8], [9] and [11] compared Vedic 
Multiplier with other multiplier architectures namely Booth, 
Array and Wallace on the basis of delay and power 
consumption. Vedic multiplier showed improvements in both 
the parameters over other architectures. Thus, many 
implementations of multiplication algorithms based on Vedic 
sutras have been reported in literature [10]-[12]. Vedic 
multiplier schemes proposed in literature are based on Urdhva 
Tiryagbhyam and Nikhilam sutras of Vedic Mathematics. As 
Nikhilam sutra is only efficient for inputs that are close to the 
power of 10, in this paper a design to perform high-speed 
multiplication based on the Urdhva Tiryagbhyam sutra of 
Vedic Mathematics which is generalized method for all 
numbers, has been presented.  

The final step, carry-propagate addition, requires a fast 
adder scheme because it forms a part of the critical path. A 
variety of adder schemes have been proposed in literature to 
optimize the performance of Vedic multiplier [13]. Adder 
based on QSD shows an improvement in speed over other state 
of the art adders [14, 15]. Earlier implementations of QSD 
adder were based on Multi Voltage or Multi Value Logic 
(MVL) [16]. The difficulty in application of quaternary 
addition outside MVL (Multi Voltage logic) is that, the adder is 
only a small unit of the design whose outputs will needed to be 
converted back to binary for further processing. However, use 
of a conversion module undermines the advantages gained in 
speed by using QSD. In this paper, a novel implementation of 
an adder based on QSD is proposed, which reduces the carry 
propagation delay in the design by making use of carry free 
arithmetic. The proposed adder design works on a hybrid of 
binary and quaternary number systems wherein the sum is 
directly generated in binary using the concept of an adjusting 
bit, eliminating the conversion module. The design can be 
scaled to larger bit implementations such as 32, 64, 128 or 
more with minimal increase in propagation delay owing to the 
parallelism prevalent in the design. We have compared our 
design with a Vedic multiplier based on MVL logic that uses a 
ripple carry adder [16], Vedic Multiplier that incorporates a 
QSD adder and a conversion module for quaternary to binary 
conversion, Vedic multiplier that uses state of the art fast adder 
scheme such as Carry select adder [17] and a commonly used 
fast multiplication mechanism such as Booth multiplier [18], to 
prove the feasibility of our design across important comparison 
points.  

This paper is organized as follows. Section II describes the 
Basic Terminology associated with our design. Section III 
describes the Proposed Multiplier architecture based on Vedic 
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multiplication and Quaternary addition. Section IV comprises 
of Result in which device utilization summary and 
computational path delay obtained for the proposed Vedic 
multiplier (after synthesis) is discussed and Section V consists 
of Conclusion. 

II. BASIC TERMINOLOGY 

A. Urdhva Tiryagbhyam (UT) Sutra  
The UT sutra is an ancient Vedic Mathematics sutra that 

can be used for multiplication of two numbers in any number 
system. It is based on “Vertical and Crosswise” multiplication. 
A 2x2 multiplier based on UT sutra is depicted in Fig. 1 and 
Fig. 2, where X and Y represent inputs while Z corresponds to 
output. Stepwise procedure is outlined below. 

Step1: Vertical Multiplication: The least significant digits 
of the multiplicand and the multiplier are multiplied, as in (1). 

Z0=X0.Y0                                   (1) 
Step2:  Crosswise Multiplication and Addition: Z1, in (2), is 

obtained by cross multiplying X1 and Y0, and Y1 and X0 and 
subsequently adding the two products. In this stage a carry C1, 
as in (3), might be generated, that is propagated to the next 
step. 

Z1= (X0.Y1) ⊕ (X1.Y0)                         (2) 
C1=X0.X1.Y0.Y1                             (3) 

Step3: Vertical Multiplication and Addition: The most 
significant digits of the multiplicand and the multiplier are 
multiplied, and the product is added with the carry of the 
previous step to obtain Z3 and Z2, as in (4) and (5) 
respectively. 

Z2= (X1.Y1) ⊕ C1                             (4) 
Z3= X0.X1.Y0.Y1                             (5) 

The final result is concatenation of Z3, Z2, Z1 and Z0. 

  
Fig. 1.  Vertical and Crosswise multiplication 

The logic circuit for 2x2 UT multiplier is shown Fig. 2.  

 
Fig. 2.  2x2 UT multiplier 

B. Quaternary Signed Digit (QSD number system) 
The QSD is a radix-4 number system that provides the 

benefit of faster arithmetic calculations over binary 
computation, as it eliminates rippling of carry during addition. 
Every number in QSD can be represented using digits from the 

set {-3,-2,-1, 0, 1, 2, 3}. Being a higher radix number system it 
utilizes less number of gates and hence saves on time and 
reduces circuit complexity. The stages involved in addition of 
two numbers in QSD are: 

Stage1: Generation of intermediate carry and sum: When 
two digits are added in QSD number system, the resulting sum 
ranges between -6 to +6.   Numbers with magnitude higher 
than 3 are represented by multiple digits with least significant 
digit representing sum and the next digit corresponds to carry. 
Also, every number in QSD can have multiple representations 
[14, 15]. The representation is chosen such that the magnitude 
of sum digit is 2 or less than 2 and the magnitude of carry digit 
is 1 or less than 1, the reason for which is explained in the next 
stage. 

Stage2: The intermediate sum and carry have a limit fixed 
on their magnitude because this allows carry free addition in 
the second step. The result can be obtained directly by adding 
the sum digit with the carry of the lower significant digit [14, 
15]. 

III. PROPOSED DESIGN 

A. 4x4 Multiplier 
Block diagram of a 4x4 multiplier is shown in Fig. 3. In this 

multiplier, four 2x2 multipliers are arranged systematically. 
Each multiplier accepts four input bits; two bits from 
multiplicand and other two bits from multiplier. Addition of 
partial products is done using two four bit Quaternary adders, a 
two-bit adder and a half adder. The final result is obtained by 
concatenating the least significant two bits of the first 
multiplier, four sum bits of the second four-bit Quaternary 
adder and the sum bits of two-bit adder. 

 
Fig. 3.  Proposed 4x4 Multiplier 

Table I shows all intermediate and final results involved in 
the multiplication process of two binary numbers, A = (1111)2  
and B = (1001)2. 

The data flow in the proposed 4x4 multiplier is given 
below: 

1) A[1:0] and B[1:0], A[3:2] and B[1:0], A[1:0] and 
B[3:2], and A[3:2] and B[3:2] are multiplied by 2x2 Vedic 
multipliers, giving output D0[3:0], D1[3:0], D2[3:0] and 
D3[3:0] respectively.  
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2) D1 [3:0] and D2[3:0]  are added by the proposed 4 bit 
QSD adder, giving D4[3:0] and a carry out as the outputs. 

3) D4[3:0] and {D3[1:0], D0[3:2]} are added by the 
second 4 bit QSD adder, giving D5[3:0] and a carry out as the 
outputs. 

4) The half adder is used to add the carry outs of the 
QSD adders. The output obtained is fed to the 2 Bit Adder 
along with D3[3:2]. 

5) The result, C, in binary is obtained by concatenation 
of output of 2 Bit Adder, D5[3:0] and D0[1:0]. 

The proposed design can be extended to multiply both 
negative and positive integers by an addition of a sign bit in 
both inputs. An XOR logic can then be used to compute the 
sign bit of the final output. The multiplication of the 
magnitudes will proceed simultaneously in a similar manner to 
the example described above. 

TABLE I.  MULTIPLICATION RESULT OF TWO 4 BIT BINARY NUMBERS 
USING THE PROPOSED DESIGN 

 Binary 
equivalent 

Decimal 
equivalent Explanation 

A (1111)2 15 Input 1 
B (1001)2 9 Input 2 

D0 (0011)2 3 Output of 2x2 Vedic 
Multiplier 1 

D1 (0011)2 3 Output of 2x2 Vedic 
Multiplier 2 

D2 (0110)2 6 Output of 2x2 Vedic 
Multiplier 3 

D3 (0110)2 6 Output of 2x2 Vedic 
Multiplier 4 

D4 (01001)2 9 Output of 4 bit QSD adder 1 
(D1+D2) 

D5 (10001)2 17 Output of 4 bit QSD adder 2 
(D4 +{D3[1:0],D0[3:2]}) 

C[1:0] (11)2 3 D0[1:0] 
C[5:2] (0001)2 1 D5[3:0] 

C[7:6] (10)2 2 Output of 2 Bit Adder 
(D3[3:2]+D4[4]+D5[4]) 

C[7:0] (10000111)2 135 Final Result 

B. 32x32 multiplier 
The 4x4 multiplier design can be scaled to multiply larger 

numbers as shown in Fig. 4, where the design is scaled up for a 
32 bit multiplier. 

 
Fig. 4.  Proposed 32x32 Multiplier 

C. Proposed  adder design based on QSD  
In this paper, a novel idea of an adder, based on QSD 

(Quaternary Signed Digit) is proposed. The algorithm for the 
proposed adder uses a hybrid of quaternary and binary number 
systems. The outputs from smaller multipliers are obtained as 
binary strings. Inside the addition module, this string is broken 
into quaternary digits of two bits each.  Addition using QSD 
allows us to reduce the carry propagation delay by making use 
of carry free arithmetic i.e. the carry doesn’t ripple past the 
subsequent quaternary digit. Especially for higher bit input 
strings this method is extremely efficient. 

The difficulty in application of quaternary addition outside 
MVL (Multi Voltage logic) is that the least significant 2 bits of 
the binary representation of the quaternary digits can’t be 
directly concatenated to form an output binary string for every 
case as depicted in Table II. Each string would have to be read 
individually and a conversion module that converts quaternary 
to binary would have to be employed. To overcome this 
limitation, the concept of an adjusting bit has been introduced.  

TABLE II.  CONVERSION OF A QUATERNARY NUMBER TO BINARY 
NUMBER SYSTEM 

Quaternary 
number A 2 1  010_001 Quaternary 

number B 2   010_111 

Binary 
equivalent of A 1001 

Incorrect Binary 
equivalent of 

B 
1011 

Decimal 
equivalent 

of A 
9 

Incorrect 
Decimal 

equivalent of B 
11 

The Intermediate sum lies in the range [0, 6], as the 
operands are unsigned numbers. From [16], for quaternary 
addition to be carry free beyond the first stage, the 
intermediate sum can’t be greater than 2. To ensure this 
stipulation holds true, the (1 )4 representation of 3 needs to be 
chosen while adding. However, this represents a blocking case 
when converting the final output string back into binary as it 
prohibits us from simply concatenating the lower two bits of 
quaternary output strings to get the binary equivalent. 

For addition of unsigned numbers, if the (03)4 
representation would have been used, direct concatenation of 
results could have been possible. But, then that wouldn’t have 
always been carry free after the initial stage. Thus, the concept 
of an adjusting bit has been devised to solve the dilemma of 
which representation of 3 to use, such that both carry free 
addition and concatenation of output string bits to get the final 
output can be realized in the same design.  

The solution to the problem described above, is that the 
(03)4 representation of 3 is required to be taken instead of the 
(1 )4 representation in some cases. But, determining when such 
a change is required before proceeding with the addition will 
increase the delay of the design and be counter-productive. 
Thus, the (1 )4 representation of 3 is always selected in stage 1, 
to satisfy necessary conditions for carry free arithmetic. While 
necessary adjustments are made in stage 2 if (03)4 
representation was to be taken, the need for such an adjustment 
is determined via an adjusting bit.  

OBSERVATION 1: In both quaternary representations of 3, 
(03)4 or (1 )4, the two least significant bits of the least 
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significant digit are 11. Thus, regardless of which 
representation was supposed to be taken, the lower two bits of 
the intermediate sum will remain same and these are the two-
bit positions that would be concatenated in the end.  

The problem of incorrect representation would come under 
certain cases. To better understand these cases an example is 
described. The example uses two numbers as inputs 
represented using three quaternary digits each: 

Input A= (X3X2X1)4 = (A8A7A6A5A4A3A2A1A0)2 = (030)4 

Input B = (Y3Y2Y1)4 = (B8B7B6B5B4B3B2B1B0)2 = (001)4 
The Base case: For addition of X2 and Y2, if the 

intermediate sum comes out to be 3, as stated above (1 )4 

representation will be chosen in stage 1. The Intermediate sum 
for this digit addition becomes  or (111)2. If then the 
intermediate carry from the addition of X1 and Y1 is 0, the 
final output after stage 2 for this addition would be . The 
intermediate carry that will be added to addition of X3 and Y3 
would be 1. The binary output thus received after the 
concatenation of lower two bits will be wrong, as shown in 
Table III. 

As established above, this problem wouldn’t have been 
there if the (03)4 representation of 3 would have been used. 
According to the findings of observation 1, the intermediate 
carry from addition of X2 and Y2 needs to be negated for the 
correct result because for (03)4 there would have been no 
carry. This negation will be done by the adjusting bit. 

TABLE III.  EXAMPLE OF QUATERNARY ADDITION USING ORIGINAL LOGIC 

X3X2X1 0 3 0  000_011_000 Input A 

Y3Y2Y1 0 0 1  000_000_001 Input B 

U1   000_111_111 Stage 1 output (Intermediate sum) 

U2  0 1 0 Stage 1 output (Intermediate carry) 

R     001_111_001 Result (Before concatenation) 

R’ (01 11 01)2 Incorrect Result (After concatenation) 

 
Mathematically this can be written as: 
Final output = Intermediate sum + Intermediate carry – 

Adjusting bit.  
Thus, adjusting bit can be said to be 1 when (Sn-1. ) is true 

where Sn-1 and  are defined as: 
Sn-1: True if n-1th intermediate sum digit is 3. 

: True if there is no carry from n-2th digits sum. 
Secondly, another special case could arise when the 

intermediate sum for addition of X2 and Y2 and X1 and Y1 are 
both 3. For example if A = (030)4 and B = (003)4. Now as per 
previously devised logic the addition would have proceeded as 
in Table IV. 

Thus, the final result as shown in Table IV, would have 
been (01 11 11)2 which is incorrect. The intermediate carry 
from the addition of X2 and Y2 hasn’t been negated while 
carry from addition of X1 and Y1 has. This is because 

intermediate carry from X1 and Y1 is taken as 1 while 
calculating the adjusting bit for X3 and Y3 While an 
adjustment is made to it later to negate it to 0. This adjustment 
hasn’t been factored into the formula. Thus, the modified and 
complete formula for adjusting bit becomes as in (10). 

TABLE IV.  EXAMPLE OF QUATERNARY ADDITION USING INITIAL 
MODIFIED LOGIC 

X3X2X1 0 3 0  000_011_000 Input A 

Y3Y2Y1 0 0 3  000_000_011 Input B 

U1    000_111_111 Stage 1 output (Intermediate sum) 

U2 0 1 1 Stage 1 output (Intermediate carry) 

A 0 1 0 Adjusting Bit 

R     001_111_111 Result (Before concatenation) 

R’ (01 11 11)2 Incorrect Result (After concatenation) 

 
Adjusting bit = Sn-1.(Sn-2+ )                     (10) 

Where Sn-2 is true if n-2th intermediate sum digit is 3. This 
formula can cover the problem of n consecutive 3’s in a 
similar manner. 
The adjusting bit can be predicted based on the initial inputs to 
the adders itself. It can be computed in parallel with Stage 1. 
Thus, effect on delay of the adder is minimal. The above 
example is revaluated with the modified formula: 

Input A= (X3X2X1)4 = (A8A7A6A5A4A3A2A1A0)2 = (030)4 

Input B = (Y3Y2Y1)4 = (B8B7B6B5B4B3B2B1B0)2 = (003)4 

Adjusting Bit for addition of Xn and Yn is Sn-1.(Sn-2+ ). As 
can be seen from the flow of data shown in Table V. The 
modified formula gives the correct binary output after 
concatenation. 

The proposed adder works in two stages, as shown in Fig. 5. 
1) In the first stage, as in Fig. 5(a), every individual 

digit at the same position in the quaternary representation of 
two n-bit numbers A and B is added using a 2 Bit Adder to 
generate a sum. This sum lies in the range [0, 6]. From the 
sum obtained from the adder, the intermediate sum and 
intermediate carry for the next stage are calculated in parallel 
using 2x1 multiplexers. The logic for the selection of the 
representation of sum and carry has been explained in [16]. 
The adjusting bit is also computed in parallel with the addition 
process. The input to the adjusting bit calculation block for 
every quaternary digit addition are the previous two 
quaternary digits of A and B signified by [n-2: n-5]. 

2) Second stage has two modules as shown in Fig. 5(b). 
One is a one-bit module that performs the computation (A+B-
C). In this case A would be LSB of intermediate sum, B would 
be carry from the previous quaternary digit addition and C 
would be the adjusting bit. The other module will be a half 
adder which will add the carry from the (A+B-C) module and 
the bit to the left of the least significant bit of the intermediate 
sum. As for the final concatenation, the sign bit would not be 
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used owing to the adjustments proposed in the design. Thus, 
its final value is not computed. 

TABLE V.  EXAMPLE OF QUATERNARY ADDITION USING PROPOSED 
LOGIC 

A (1100)2 Input 1 

B (0011)2 Input 2 

Q1 11_00  3 0 Quaternary representation of Binary number A 

Q2 00_11  0 3 Quaternary representation of Binary number B 

X2X1 3 0  011_000 Input A 

Y2Y1 0 3  000_011 Input B 

U1    111_111 Stage 1 output (Intermediate sum) 

U2 1 1 Stage 1 output (Intermediate carry) 

S2 1 2nd intermediate sum digit is 3 

S1 1 1st intermediate sum digit is 3 

S0 0 0th digits do not exist 

C1 1 Carry from sum of 2nd digits is 1 

C0 1 Carry from sum of 1st digits is 1 

A2 S2.(S1+ ) = 1 2nd Adjusting Bit 

A1 S1.(S0 + ) = 0 1st Adjusting Bit 

A 1 0 Stage 1 output (Adjusting Bit) 

U3 001_111_111 Stage 2 output (Before Adjusting Bit logic) 

U4 000_111_111 Stage 2 output (After Adjusting Bit logic) 

R (1111)2 Result after concatenation 

 

      

2 Bit Adder-1

                                      B[n:n-1]      A[n:n-1]

MUX-1

            To Stage 2        U2 (Quat_carry)                      U1[2:0] (Quat_sum)

MUX-2

Select 
line

Carry

{1'b0,Sum[1:0]}

1'b1 3'b111

Adjusting Bit 
Logic

{B[n-2:n-5],A[n-2:n-5]}

Combinational 
Logic

 
                                                 (a) Stage 1 

                 

                    
 

(b) Stage 2 
Fig. 5.  Proposed Adder  

IV. RESULTS 
In this section, we present a comparison between proposed 

design of multiplier and existing architectures namely Vedic 
multiplier based on MVL logic that uses a ripple carry adder 
[16], Vedic Multiplier that incorporates a QSD adder with a 
conversion module for quaternary to binary conversion, Vedic 
multiplier based on a different fast adder scheme such as Carry 
select adder [17] and a known fast multiplication scheme such 
as Booth multiplier [18].  These four architectures were chosen 
and implemented to verify the viability of proposed design 
across all domains it’s pertinent to. All architectures are 
described using Verilog HDL and all the possible states 
including corner cases for digit by digit multiplication blocks 
are verified using simulation with Xilinx ISim simulator. The 
design synthesis has been carried out using Synopsys Design 
Compiler, using the open-source NAN gate 15nm technology 
library[19]. Table VI shows that proposed design has made 
substantial improvements in terms of speed over the existing 
designs. The total delay of 128x128 Multiplier based on 
Proposed Design comes out to be 578.85 ps which is 88.75% 
faster than booth multiplier,71.35% faster than MVL multiplier 
based Multiplier, 17.47% faster than Carry select adder based 
Multiplier and 51.69% faster when compared with QSD Adder 
based Vedic Multiplier using conversion module. 

 Proposed 128x128 design has 7.7% lower implementation 
area then CSA based Vedic multiplier but shows an increase in 
area over other three designs, as shown in Table VII, it can be 
considered as a tradeoff for the substantial improvement in 
speed over those designs. As shown in Table VIII, for 16 input 
bit value the proposed design consumes the lowest power 
amongst the designs compared. Whereas, for the larger input 
sizes, the power consumed by proposed designs is 25.14% and 
20.64% more than the lowest recorded power amongst the 
designs compared for 64 bit and 128 bit respectively. 

TABLE VI.  COMPARISON OF PROPOSED DESIGN WITH OTHER 
MULTIPLIER ARCHITECTURES ON THE BASIS OF TOTAL DELAY 

Type Of Multiplier Delay (ps) 
16 bit 32 bit 64  bit 128 bit 

Proposed Design 266.13 422.65 501.68 578.85 
QSD Adder based 

Vedic Multiplier with 
conversion module 

308.27 506.96 878.25 1198.21 

CSA based Binary 
Vedic Multiplier 362.61 484.88 595.11 701.43 

MVL Multiplier 431.18 949.25 1763.98 2020.71 
Booth Multiplier 637.57 1259 2604 5148.56 

TABLE VII.  COMPARISON OF PROPOSED DESIGN WITH OTHER 
MULTIPLIER ARCHITECTURES ON THE BASIS OF AREA 

Type Of Multiplier Area (No. of Cells) 
16 bit 32 bit 64  bit 128 bit 

Proposed Design 768 3475 14440.6 58842.6 
QSD Adder based 

Vedic Multiplier with 
conversion module 

678.9 2660.8 12303 50181.9 

CSA based Binary 
Vedic Multiplier 938 3884.2 15801 63767 

MVL Multiplier 432 1765.1 7212    29464.2 
Booth Multiplier 605 2332 8977 35987 
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TABLE VIII.  COMPARISON OF PROPOSED DESIGN WITH OTHER 
MULTIPLIER ARCHITECTURES ON THE BASIS OF POWER 

Type Of Multiplier Power (mW) 
16 bit 32 bit 64  bit 128 bit 

Proposed Design 737.72 4446.7 24132 99630 
QSDA based Vedic 

Multiplier with 
conversion module 

 
774.35 

 
4066.3 

 
20958 

 
87176 

CSA based Binary 
Vedic Multiplier 

1024.4 4558.7 19284 82580 

MVL Multiplier 912.5 4722.2 21189 96478 
Booth Multiplier 800.62 4627.1 19659 86556 

V. CONCLUSION 
It can be concluded that the design when scaled to higher 

bits only shows a marginal rise in delay due to its core 
strengths. Firstly, the parallelism involved in its partial product 
generation. Secondly, reduction of carry propagation delay in 
the novel adder it incorporates. Due to the use of QSD, the 
design is able to incorporate carry free arithmetic while 
eliminating radix conversion module speed overhead by 
integrating concept of adjusting bit logic in its architecture. 

The proposed design showed an increase in implementation 
area over some designs due to increased parallelism even in 
finer nuances of the architecture. The proposed design is 
targeted towards digital systems requiring high throughput and 
low latency at the cost of area overhead. For example, in a DSP 
system, operations such as Fast Fourier Transform, 
Convolution, Filtering and Discrete Wavelet transform etc. 
Multipliers play a key role in determining the speed of the 
system. Similarly, this architecture would be a good candidate 
to be implemented as a large part of systems like DCT, Central 
Processing Unit (CPU), MAC (Multiply and Accumulate) Unit, 
Image Processors where high-speed multiplications are critical 
to the performance of the system. 

It can also be observed that despite the objective of 
decreasing the delay, the proposed design performs better than 
most designs compared in terms of power for lower input bit 
sizes [16 and 32 bit]. Although it consumes more power than 
other designs higher input bit sizes [64 and 128 bit], it is 
justifiable when factored in with advantages gained in speed 
for higher input bits. 
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